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A B S T R A C T

This paper presents a methodology to optimally share the available grid capacity among customer assets con-
nected within a low voltage distribution grid. Distributed energy resources (DERs) and a new generation of loads 
such as heat pumps, thermal, hydrogen, electric storages, and vehicles are increasingly being connected to 
distribution grids. These DERs and loads are intermittent and it is essential to optimally control them for the safe 
operation of the grid. Additionally, there is increased interest in the local generation, production, trading, and 
consumption of energy. New regulations to establish local energy communities (LEC) have come to fruition 
among member nations across Europe. This is to provide a control, market, and legal framework for managing 
such distributed generators and flexibilities in low and medium-voltage distribution grids and conclusively 
empower end-users to democratize the energy system. Within a LEC, a local energy market (LEM) is to be 
implemented. A significant constraint of a LEM or energy accounting system is the grid settlement process. The 
grid should remain in a steady state when the bids in the market are executed. The methodology discussed in this 
paper will preemptively stabilize the grid and generate limiting profiles at various locations for individual 
flexibilities that are part of the local energy market. This is achieved by using an Optimal Capacity Management 
system which generates limiting profiles at the points of common couplings of various controllable devices in the 
grid. The controllable devices are required to maintain their active power injection and consumption within the 
generated limiting profiles to ensure optimum grid level. This will ensure that grid limits are maintained, which 
are simulated on a test feeder and also applied to a real network model from the Heimschuh pilot site in Styria, 
Austria.   

1. Introduction

Clean energy for all Europeans, as part of the Clean Energy Package
from the European Commission, for the first time, recognizes the for-
mation of energy communities [1]. Energy communities can induce both 
challenges and opportunities in the energy ecosystem. They can 
encourage the community members to increase renewable energy pro-
duction and provide flexibility services to the network operators. Load 
aggregation can lead to communities offering flexibility services such as 
grid congestion management, peak load shaving, and improve power 
quality. However, although energy management within the community 

may decrease costs locally, overall system costs may increase due to 
individual loads and renewable energy generators’ coordination. 

Blockchain Grid project funded by the Austrian Research Promotion 
Agency [2], demonstrates a blockchain-based peer-to-peer local energy 
community (LEC). The project does not consider how to deal with excess 
renewable energy production but rather how to use remaining free grid 
resources (time-varying power and voltage bands) in the community’s 
merit. Such a system is possible due to the utilization of a high level of 
trusted automation provided by Blockchain technology. The method is 
to implement a Blockchain-based application that allows prosumers to 
share free grid resources for their surplus generation and load. The 
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distribution system operator (DSO) acts as a facilitator. Technical and 
organizational requirements are analyzed for a distributed solution in 
which grid customers can share excess grid capacities for their flexible 
loads. One of the focuses is on potential regulatory designs and the 
challenge to design equity among grid participants, given that users are 
physically different depending on their localization within the grid. 

In Austria, LEC will facilitate the creation of a local energy market 
(LEM), located in a low or medium voltage distribution grid. Community 
members can trade the energy, locally. With the roll-out of a large 
number of smart meters and measurement devices, distribution grids are 
becoming more observable. Simultaneously, with a large number of 
smart devices connected with the distributed renewable energy sources 
and a new generation of loads like heat-pumps, thermal, electric, 
hydrogen storage, and vehicles, increasing the controllability. However, 
LEMs have a significant limitation. The bids in the market need to be 
managed and therefore, a settlement mechanism is needs to be imple-
mented to ensure grid security, when the bids agreed in the market are 
executed. This is discussed further in Section 2.1. 

In the literature, various methods related to capacity management 
are presented. Most of the methods are based on either numerical iter-
ation or optimization. Optimal hosting capacity, grid capacity, and 
optimal placement problems are fundamental variations of optimal 
power flow (OPF) described in [3]. Hosting capacity is commonly used 
in the context of distributed renewable energy (DER) generators (photo- 
voltaic (PV), micro-wind, micro-hydro…) connected to distribution 
grids [4–6]. However, this term can be extended to loads such as heat 
pumps, thermal, hydrogen, electric storage, and electric vehicles (EV), 
or any other kind of controllable and uncontrollable loads. Nevertheless, 
the term grid capacity is used mostly for loads. 

Authors in [7] have developed a methodology to provide power 
regulation services to the DSO using aggregated EV. This method can be 
used to calculate the regulation of power in the upward and downward 
direction of the EV fleet, providing voltage services to the grid. 
Futhermore, the research work does not present the impact on the grid 
when these services are active, and since they are aggregated, insuffi-
cient control is provided to a single customer or a charging station. 
Additionally, more intensive control mechanisms are required within a 
local energy market (LEM) for concluding settlement procedures. In [8], 
authors present a probabilistic hosting capacity method with the in-
clusion of uncertainties related to RES and loads. The method is mostly 
used for planning purposes and is bench-marked using a network model. 
However, the method cannot provide schedules or control set-points to 
individual generators or loads and cannot be included in a LEC without 
major modifications. In [9], a stochastic optimization method is pre-
sented. Similar to [8], it cannot be used for set-point generation meant 
for individual flexibility or RES units connected at a particular bus in the 
grid. A methodology to optimally control EVs within a region (region- 
based) is provided in [10]. This is used to generate an EV chargeable 
region and an EV charging upper limit for active power for each bus. 
This method can be compatible with the local peer-to-peer energy 
market but is limited only to electric vehicles and does not consider 
other types of loads or RES generation. In the research work presented in 
[11], an electric storage system is used to provide voltage regulation 
services to the grid and to increase PV hosting capacity. However, the 
method is designed for instantaneous control and does not focus on 
scheduling flexibilities. Authors in [12] postulate a deterministic and 
probabilistic control scheme for EV control to improve power quality in 
a distribution grid. This paper, similar to [8], does not focus on control 
of individual EVs. Authors in [13], have presented a scalable optimi-
zation problem to optimally configure the RES placement to maximize 
the hosting capacity. The optimization approach looks promising as it 
can deliver global optimum, the method is not suitable for real time 
operation but rather for planning purpose. Research work described in 
[14], presents a novel energy management system to manage inter-
connected micro-grid. It involves the creation of a step-wise demand 
response strategy to manage various assets in the micro-grids with two 

levels of control. A major limitation of this approach is the not being able 
to reach a global optimum due to multi-level control. Very detailed in-
formation about the assets are needed. In [15], a bi-level power and 
energy management system for a micro-grid is presented. It consists of a 
upper level which is responsible for power management and lower level 
for energy, using evolutionary algorithms. This approach has similar 
disadvantages as [14]. A global optimum is difficult to achieve. More-
over, the set-points are directly transmitted to the flexibilities, where as, 
in this paper, a band of limiting profiles are generated. Authors in [16] 
presented a stochastic energy management system to manage RES units 
like solar, wind and tidal sources in the presence of the demand response 
program and storage devices, in a micro-grid. It uses a linear multi- 
objective programming method. It does not however, include a 
method to segregate the load types and provide a method to include 
multiple variety of flexibilities without the need for comprehensive data. 
In [17], the authors describe an optimal control problem using two 
approaches, direct method and Bellman’s Dynamic Programming Prin-
ciple, respectively and the method looks promising. However, it does not 
include the power flow. This method cannot be extended to a low 
voltage distribution grid consisting of power lines, where power flows 
need to be taken into consideration. An energy management strategies is 
presented in [18], which uses deep reinforcement learning, within an 
energy internet. The approach is similar to OPF type C, as presented in 
[19], where a load flow solver is used in congention with an OPF solver 
for power flow related information and OCM is based on OPF Type C 
(see Section 2, for more information). 

From the literature, it can be established that currently a method-
ology does not exist that can generate active power set-points (operation 
band or limits) by calculating the hosting or grid capacity at each node 
in the low voltage distribution grid, including multiple RES and load 
types. Additionally, methods cited above are not readily compatible 
with a LEM to provide settlement services for grid stability. A holistic 
methodology that can accommodate all flexibility types coupled with 
DERs is missing or needs improvement. Moreover, such a system should 
be able to run online with a short reaction or sampling time to counter 
stochastic RES and loads. 

Therefore, this paper presents the following contributions which are 
beyond the state-of-the-art,  

1. A holistic methodology, which includes multiple flexibilities and
load types, entitled Optimal Capacity Management (OCM) control
scheme to manage available grid capacity in low voltage distribution
grid (see Section 2.2).

2. A real-time local peer-to-peer energy market settlement process
alongside its relation to OCM (see Section 2.1).

3. OCM methodology which is based on holomorphic embedding load
flow method (HELM) and genetic algorithm (GA) with various ob-
jectives and constraints for test and real grid scenarios (see Sections
2, 2.2.2 and 2.2.3) to generate the limiting profiles for market set-
tlement process, in a peer-to-peer LEC.

4. Validation of the methodology using test (see Section 3) and a real
feeder (see Section 4) located in Austria with real measurements.

This paper is structured as follows; the OCM methodology is pre-
sented in Section 2, the introduction to the relationship between OCM 
and a local peer-to-peer energy market is presented in Section 2.1. OCM 
formulation, objectives, inequality and HELM used as equality con-
straints are presented in Sections 2.2, 2.2.2 and 2.2.3, respectively. 
Results based on a test feeder and Heimschuh pilot site is presented in 
Sections 3 and 4, respectively. Finally, conclusions and outlooks are 
presented in Section 5. Table 1 is a list of abbreviations used in the 
paper. 

2. Methodology

Local energy communities are generally located in a low or medium
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voltage distribution grid, as represented by a general schematic shown 
in Fig. 1, comprising a low voltage distribution feeder connected to a 
certain number of uncontrollable loads (UL01, UL02, …) and flexibil-
ities like a community battery (CB), connected at Bus05 and electric 
vehicle charging stations (CS01 and CS02) at Buses 07 and 09, respec-
tively. Customers connected to the distribution grid have the opportu-
nity to either opt-in (agree) or opt-out (decline) when participating as 
part of the LEC. Flexibilities either on the customer premises or at the 
grid level can be part of the community [20]. They can support the grid 
and the community, either directly or through a local ancillary services 
market. In the Heimschuh pilot site, a large community battery and two 
charging stations were provided as available flexibilities and are part of 
the community (see Section 4). 

The DSO is required to maintain the grid security at the distribution 
level and this role is to be continued after the formulation of a LEC [20]. 
Since LEMs are located at the distribution grid level they should contain 
a settlement mechanism that ensures high power quality and supply 
continuity. This is to make sure that the bids agreed upon in the market, 
when executed, will not cause grid instability. OCM is presented in this 
paper to enable the DSOs to enforce power quality. OCM will be 
deployed at the DSO control center or the LEC authority premises. At the 
Heimschuh pilot site, the OCM is deployed at the location of the com-
munity battery. 

OCM involves the generation of limiting active power profiles (Pmin
t 

and Pmax
t ) at the buses where flexibilities are connected (see Fig. 2). This 

is pertaining to Fig. 1. Similar limits are generated at all the flexibilities 
in the grid. This is based on the method presented in [21], where 
limiting profiles are generated at the bus where controllable loads are 
located. However, in this paper, the limiting profiles are generated 
directly for the flexibility itself. This enables multiple flexibilities at the 

same bus to participate in the LEM. Additionally, in [21], poor reactive 
power control is observed due to the lack of reactive power controllable 
devices in the grid. Therefore, reactive power limits (Qmin

t and Qmax
t ) are 

omitted. Moreover, reactive power is irrelevant in a LEM. Compared to 
[21], this paper presents additional explanation and validation of the 
OCM and relation to LEM, along with a detailed explanation based on 
two experimental setups. 

Limiting profiles can be observed in Fig. 10 (adapted from the figure 
presented in [21]). Subsequently, this can also be observed in Fig. 3 
which represents the Pmin

t and Pmax
t profiles for a particular flexibility. 

Such profiles are generated for all the flexibilities participating in the 
LEM. The active power consumed by the flexibility during market 
operation is required to be in-between the Pmin

t and Pmax
t limits to 

maintain the grid within its prescribed limits. The limiting profiles can 
take both positive (power consumption) and negative (power injection) 
values. This is applicable to the community battery, which can either 
charge and discharge. The load flow analysis of a power grid suggests 
that, for a particular grid loading condition, the grid capacity is constant 
i.e. the power that can be fed-into or consumed for a particular feeder is 
fixed. This is due to the non-causal nature of the load flow solution. This 
is also affected by the distance from the transformer and voltage drop 
along the lines. These specific limiting profiles are sharing the available 
grid capacity among the flexibilities depending on the objective function 
and constraints. This is observed in a simple example presented in 
Section 3 and Fig. 6. 

The flexibilities are required to remain within the operation range 
provided by the OCM while participating in the LEM. Doing so will 
ensure that no limits are violated at any of the buses in the distribution 
grid. 

2.1. Relevance to local peer-to-peer energy markets 

Traditionally, in national or European level energy markets, the 
physical settlement process is done by the transmission system operator 
(TSO) who is responsible for maintaining transmission grid security. 
This is possible due to the fact that transmission grids are over observed 
and controllable. However, such a market structure, cannot be readily 
transposed to a distribution grid, which is neither controllable nor 
observable. 

Table 1 
Abbreviations.  

OCM Optimal Capacity Management 
DER Distributed Energy Resources 
DSO Distribution System Operator 
TSO Transmission System Operator 
RES Renewable Energy Sources 
OPF Optimal Power Flow 
LEC Local Energy Community 
LEM Local Energy Market 
EV Electric Vehicles 
PV Photo Voltaic 
HELM Holomorphic Embedding Load flow Method 
GA Genetic Algorithm 
CS Charging Station 
CB Community Battery 
UL Uncontrollable Load  

Fig. 1. General schematic of a LEC.  

Fig. 2. Limiting active power profiles (Pmin
t and Pmax

t ) generated at Buses 05 and 
07, respectively, where the community battery and charging station 
are connected. 

Fig. 3. Representation of limiting profiles of a flexibility in a LEC.  
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In recent years, distribution grids are moving towards increased 
controllability and observability, with the help of smart meters and a 
new generation of loads and distributed generators. Contrary to TSO, a 
DSO cannot be responsible for managing the settlement process due to 
the large number of distributed loads and generators. Therefore, a 
control mechanism is needed to preemptively controlled the flexibilities 
even before the market bidding begins. OCM generates the limiting 
profiles and if the flexibilities operate within the limits, the physical 
settlement has occured. This will ensure that the bids in the LEM, when 
enacted, will not lead to grid violations or power quality issues. The 
Blockchain Grid project addresses this issue by coupling the LEM with 
the OCM system. 

In this publication, the LEM structure is not presented, as it is out of 
the scope of this study. Rather, the linkage between the OCM and the 
market is provided. There are multiple blockchain based energy markets 
approached available in the literature [22–24]. The system architecture 
of the Blockchain Grid project is presented in Fig. 4. A permissioned 
public Blockchain, based on Parity Ethereum is used in the project. The 
consensus algorithm used is ”proof of authority” procedure. Each 
authorized participants (so-called ”sealers”), can generate blocks with 
transactions into the Blockchain. The platform can dynamically add or 
remove participants. This feature is essential as sealers in the ”proof of 
authority” mechanism generate blocks in a well defined sequence and 
the block is only generated by the next sealer, if one sealer fails. 

There are two smart contracts considered, the first focusing on 
enabling peer-to-peer trading in the energy market and, second, the 
managing of the grid capacities. Customers in the pilot can own a certain 
amount of battery capacity in the community battery and be part of the 
market. Additionally, charging stations are connected to the blockchain 
to provide flexibility services. Measurement devices in the field record 
the active and reactive powers, voltage and phase angle (P,Q,V,Θ) at all 
the customers in the low voltage grid. This data is directly written into 
the blockchain and is available at all other nodes in the system in the 
next sample. The sampling rate of the system is 1 min. 

Active powers are used in the market smart contract for market ac-
tion, which will lead the generation of battery power (PCB) values 
(charging or discharging). This is dependent on the market mechanism. 

OCM will receive the P,Q,V,Θ to generate Pmin and Pmax values and is 
acquired by the capacity smart-contract. Flexibilities are required to 
operate within the provided limits and community battery limits are 
considered in the market mechanism, which calculates the battery 
power. 

2.2. Optimal capacity management 

As discussed in Section 1, OCM is based on OPF. OPF problems are 
non-linear and non-convex in nature [3]. In [3], OPF methods are 
classified into two classes. Class A set of algorithms is based on an in-
termediate load flow solution. As the optimal solution is close to those 
generated by a complete load flow, it is assumed to be operable, and the 
optimum is determined iteratively using Jacobian and sensitivity re-
lationships. Class B involves using the entire search space by using a 
solver that can handle non-linearity and non-convexity or by convex 
relaxation methods. In [19], authors present Class C type of algorithms 
which combines class A and B. OCM is based on the OPF Class C pre-
sented in [19]. However, in [19], the objective is to minimize the three 
phase voltage unbalance in contrast to OCM, which has the objective to 
generate limiting profiles and integrating it into a LEM. It uses a non- 
linear non-convex solver wrapped around a reliable load flow method 
like HELM to generate a global optimum. 

OCM is defined as an optimization problem as, 

minimize
u

F(x, u)
subject to H(x, u) = 0,

G(x, u)⩽0
(1)  

where, F(x, u) is the objective function of OCM. H(x, u) and G(x, u) are 
the equality and inequality constraints respectively. 

x, u are the state and input variables. For a low voltage distribution 
grid containing only load buses, in the context of load flow, input var-
iables are active and reactive power injection or consumption at loads, 
while the state variables are voltages, phase angles and reactive powers 
at all the buses. 

Active power limiting profiles are to be generated at all the 
controllable buses in grid, as discussed in Section 2. 

2.2.1. Objective function 
As presented in Figs. 2 and 3, limiting profiles are generated by 

defining the objective function as, 

F(x, u) =
∑

t∈T

∑

c∈C
Pc,t (2)  

Limiting profiles (Pmin
t ,Pmax

t ) are generated as follows, 

Pmin
t = minimize

u
F(x, u)

Pmax
t = − minimize

u
F(x, u)

(3) 

Fig. 4. System architecture of the Blockchain Grid project at the Heimschuh pilot site.  
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where Pc,t are the active powers at the controllable devices and at the 
time step t. C, represents the set of controllable devices/flexibilities. T is 
the optimization time horizon. Eq. 2 is minimized and maximized (- 
minimized) to generate Pmin and Pmax values as represented in Eq. 3. 

2.2.2. Inequality constraints 
Set of inequality constraints G(x, u) in Eq. 1, are described as follows, 
Limits on active power of controllable devices, c ∈ C, set of 

controllable devices and t ∈ T, time horizon, 

Plow
c,t ⩽Pc,t⩽Phigh

c,t (4) 

Limits on voltage, ω ∈ Ω represents all the buses in the grid, 

|Vlow
ω,t |⩽|Vω,t|⩽|Vhigh

ω,t (5) 

Phase shift angles limits, 

θlow
ω ⩽θω⩽θhigh

ω (6) 

Limits on shunt reactances or capacitances, 

slow
ω,t ⩽sω⩽shigh

ω (7) 

Upper limits on active power flow in distribution transformer or 
lines, between ω’th and l’th nodes, 

Pω,l,t⩽Phigh
ω,l,t (8) 

Limits on voltage angles between ω’th and l’th nodes, 

Θlow
ω,t ⩽Θω,t − Θl,t⩽Θhigh

ω,t (9)  

P,Q,V and θ are active power, reactive power, voltage and phase shift 
angle respectively. s is the shunt reactances or capacitances. Θ is the 
voltage phase angle. (See Fig. 5) 

2.2.3. Equality constraints 
Load flow results are used as equality constraints H(x,u), as described 

in the type C class of OPF algorithms. Load flow methods based on nu-
merical techniques are capable of solving a system of nonlinear equa-
tions [25]. Convergence of such methods cannot be ensured as the 
operable solution is directly dependent on the assumed initial seed 
(starting point or initial condition). If the system has multiple solutions, 
it becomes difficult to determine whether the converged solution is 
operable. Therefore, to overcome the limitations of iterative numerical 
solutions, HELM is used in this research work. The distribution grid is 
modeled based on the methodology developed in [26]. 

HELM, described in [25], involves a non-iterative load flow approach 
which guarantees an operable solution if it exists. Eq. 10 refers to the 
power balance in the load bus. Inherently, it is non-holomorphic (non- 
analytical) in nature. A function is said to be holomorphic if it satisfies 
the Cauchy-Riemann condition. 

∑

l
YωlVl(α) =

αS*
ω

V*
ω(α*)

− αYω,shuntVω(α), ω ∈ ΩPQ (10)  

where Yω,l is the ω’th and l’th element of the series bus admittance 
matrix. Vl is the voltage at bus ω. Similarly, Yω,shunt refers to the shunt 
admittance matrix. ΩPQ is the set of PQ buses. S represents the apparent 
power. 

By the process of embedding a complex variable α,V becomes a 
function of this new complex variable. This new function is holomorphic 

Fig. 5. Topology of the Heimschuh low voltage test feeder.  
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in nature. If α = 0, there is an exact mathematical solution to the 
problem, but it is not the desired solution. α = 1 provides the desired 
solution. It can be expressed as a power series, specifically as a Taylor or 
Maclaurin series represented in Eqs. 11 and 12 and which, in-turn, is a 
function of bus active and reactive power injections. By calculating the 
coefficients of series, bus voltages can be approximated. This eliminates 
the use of the computationally expensive Jacobian matrix. For α = 0,
S = 0, Eq. 10 becomes linear and the solution is mathematically exact. 
In order to use the linear solution, the admittance matrix is split into 
series and shunt elements. 

The term αS is varied to determine the voltage function from α = 0 to 
α = 1 and thus, embedding is essential. 

Vω(α) =
∑∞

n=0
Vω[n]αn, ω ∈ Ω (11)  

V*
ω(α) =

∑∞

n=0
V*

ω[n]αn, ω ∈ Ω (12) 

The coefficients of Maclauren series are determined using Pade 
approximation. The Pade approximation gives the rational approxima-
tion of a function. It accelerates the convergence with more accurate 
results with less coefficients. The approximation is valid for over a small 
domain. In this case, the domain α = [0,1]. 

H(x, u) = Vω = fHELM(Pω), ω ∈ Ω (13) 

Generalized equality constraint is presented in Eq. 13. Pω is the active 
power injections at all the PQ (Load) buses. 

3. Experimental setup I: Low voltage test feeder

OCM is applied to a low voltage test feeder to demonstrate its
effectiveness. The test network consists of five buses. Two uncontrolla-
ble loads and two charging stations are connected to it. The topology of 
the test feeder is presented in Fig. 6. The test feeder consists of only one 
branch to produce logical and understandable results. Moreover, only 
loads are included in the feeder to eliminate multi-directional power 
flows, also leading to an understandable solution. 

To validate the generated limiting profiles as described in Section 
2.2, the results from the OCM are fed back into the load flow from 
Section 2.2.3 and Eq. 13, to get the voltage values along with other state 
and unknown variables. For the sake of simplicity and with a focus on 
voltage management, the right-hand side of the Eq. 14 (for a low voltage 
distribution grid with PQ buses) only contains bus voltage magnitudes 
while voltage angles are not considered. 

Vω = fHELM(PUL01,PCS01,PCS02,PUL02) (14)  

where ω ∈ Ω represents all the buses in the grid. 
Fig. 7.a. represents the limiting profiles (Pmin

CS01, Pmax
CS01) and (Pmin

CS02,

Pmax
CS02), for the two charging stations, respectively. The limits on the two 

charging stations are, 0kW⩽PCS01⩽22kW and 0kW⩽PCS02⩽22kW. It also 

shows the active power profiles for the two uncontrollable loads (PUL01,

PUL02). It can be observed that the total maximum available capacity is 
Pmax

CS01 + Pmax
CS02 as the voltages are very close to 0.95 pu in Fig. 7.b. This 

shows that the OCM shares the available capacity between the two 
charging stations. Since CS01 is closer to the transformer, more capacity 
is assigned to it. It is also influenced by the two uncontrollable loads and 
voltage drops across the lines. The flexibility closest to the transformer is 
naturally able to accommodate more loads and generation and therefore 
leads to an unfair scenario for the flexibilities at the end of the feeder. 
The objective function can be modified to make the problem more fair. 
This is however not included in this paper as the authors are interested 
in presenting a pure power system solution, without the social factors. 

Fig. 7.b is generated using Eq. 14, where PCS01 = Pmax
CS01 and PCS02 =

Pmax
CS02, and Vmin is obtained. This represents the worst case scenario with 

maximum loading. It can be observed that all the voltage values are 
above Vlow (0.95pu), as described in Section 2.2.2. 

However, in the highlighted region, Vmin goes below Vlow, indicating 
an under-voltage violation. Only Vmin (under-voltage violation) is pro-
vided since there is no in-feed considered in this test scenario, which 
could lead to a over voltage violation. 

This is caused due to high loading on PUL01 (an uncontrollable load). 
OCM reduces the Pmax

CS01 and Pmax
CS02 values to 0 to counter the increased 

loading. Since the charging station values cannot go below 0 (start 
injecting), voltage violations will sustain. This can be rectified with 
electric storage, which can take both positive and negative values. 

Recalling from Section 2, as long as Pmin
CS01⩽PCS01⩽Pmax

CS01 and Pmin
CS02⩽ 

PCS02⩽Pmax
CS02 holds, no voltage violations can occur. 

In Fig. 8.d, Vω values are obtained by considering random values for 
PCS01 (see Fig. 8.a) and PCS02(see Fig. 8.b) while maintaining Pmin

CS01⩽ 
PCS01⩽Pmax

CS01 and Pmin
CS02⩽PCS02⩽Pmax

CS02, respectively. 
It can be observed that as long as the limiting profiles are considered 

by the flexibility, no voltage violations occur. Similarly, as previously 
explained, in the highlighted region, under-voltage violations are 
observed. 

4. Experimental setup II: Heimschuh pilot site feeder

Heimschuh is a town in the federal state of Styria, Austria, with the
largest concentration of PV installations (200 kWp installed generation 
capacity) in the grid owned by the Energienetze Steiermark GmbH, a 
DSO responsible for management of the Styrian distribution grid. The 
power generation is mostly concentrated on one low voltage feeder. The Fig. 6. Topology of the low voltage test feeder.  

Fig. 7. Limiting profiles generated for the charging stations.  
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generated PV power is straining the grid and it is at its capacity limit. 
Therefore, the additional 50 kWp of PV installations and a micro-CHP 
cannot be connected to the grid without grid reinforcement or a smart 
grid solution with active generation load management. 

There is a large utility sized battery on site with 100 kWh of com-
munity electric storage (see Fig. 9). A number of buildings/households 
are involved in the project demonstration. Twenty-one single or multi- 
family home customers are participating, all of which are fitted with 
controllers and measurement devices. Other customers are involved 
passively with measurements collected from smart meters for modeling 
and validation. OCM algorithm is running on an industrial computer 
installed inside the container where community electric storage is 
located (see Fig. 9). 

For the Heimschuh pilot site, the OCM objective presented in Section 

2.2 is modified into a two step optimization problem. As the community 
battery is part of the LEC and community members own a share of the 
battery capacity as part of LEM, priority is first given to the community 
battery above any other flexibility participating in the community. OCM 
is connected to the blockchain network and receives measurements from 
customers who part of the pilot and transformer located at the secondary 
substation. 

The modified two step OCM is presented in Eqs. 15 and 16. 

FCB(x, u) =
∑

t∈T
(PCB,t) (15)  

where FCB(x, u) is the community battery objective function. PCB,t is the 
active power of the community battery. (Pmin

CB,t ,P
max
CB,t) is generated using 

the Eq. 3. 

FCS(x, u) =
∑

t∈T

∑

CS∈C
(PCS,t) (16)  

where FCS(x, u) is the charging station objective function. CS,t is the 
active power of the two charging stations. CS ∈ C represents the set of 
flexibilities (two charging stations). (Pmin

CS,t , P
max
CS,t ) is generated using the 

Eq. 3. 
Similarly to the low voltage test feeder in Section 3, limiting profiles 

are generated for the three flexibilities in the pilot site for each sample 
time of 1 min. This can be observed in Fig. 11.a. and.b. Vmin is generated 
when PCS01 = Pmax

CS01 and PCS02 = Pmax
CS02 and PCB = Pmax

CB and can be 
observed in Fig. 11.d. As expected, Vmin are located around Vlow 

(0.95pu). Vmax is generated when PCS01 = Pmin
CS01 and PCS02 = Pmin

CS02 and 
PCB = Pmin

CB . This is the least loading or power injection condition. It can 
be observed that there is capacity left over to accommodate more power 

Fig. 8. Random values for PCS01 and PCS02 while observing the limiting profiles 
and the corresponding Vω boxplots for each time step based on Eq. 14. 

Fig. 9. Community battery located at the Heimschuh pilot site in Sty-
ria, Austria. 

Fig. 10. Limiting profiles for the community battery and the two charging 
stations, similar to Fig. 7. 
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injection into the grid. However, to accomplish this, in the highlighted 
region in Fig. 11.a, the community battery had to momentarily 
discharge. This is attributed to high loading conditions observed in the 
feeder Psum

UL , which is the sum of all uncontrollable loads. With the 
necessary discharge, and having both PCS01 and PCS02, close to zero kW, 
the voltages in Fig. 11.c are clustered around the 0.95 pu. limit. 
Therefore, by actively managing the low voltage distribution grid with a 
community battery, more PV or generators can be hosted. 

Similar to Fig. 8, Vω values are calculated by considering random 
values for PCB (see Fig. 11.a), PCS01 (see Fig. 11.b) and PCS02 (see Fig. 11. 
c). Vω values are in-between the prescribed limits as mentioned in Sec-
tion 2.2.2. Vω⩽1pu because, there are no power injections in the feeder. 

5. Conclusion

In order to facilitate the market settlement process, OCM was pre-
sented. OCM is used to generate limiting profiles (Pmin

t and Pmax
t ) values 

at all the flexibilities in a LEC, participating in the LEM. The flexibilities 
are required to operate within these limits to avoid voltage violations. 

By doing so, the bids in the market are preemptively grid secure and, 
when executed, will not lead to power quality issues. OCM and its 
relation to blockchain LEM was presented along with the system ar-
chitecture. OCM is based on OPF type C using a non-linear non-convex 
solver, GA, wrapped around a reliable load flow, HELM. This method 
was tested using a low voltage test feeder, and a detailed explanation of 
the results was provided. It was proved in both experimental setups that 
when the the limiting profiles are applied and the flexibilities are 
operated within its limits, voltages at all the buses will remain within the 
prescribed (+5, − 5%) pu. voltage. This is observed in Figs. 8 and 11. 
However, if the flexibilities are not able to respect the limits, the voltage 
constraints cannot be fulfilled and is observed in Fig. 7. Based on the test 
feeder’s learning, the method was applied to a real pilot feeder from 
Heimschuh, Austria. It was proven in Fig. 11, that no voltage violations 
will be observed as long as the limits were observed. 

5.1. Future research 

In this paper, only voltage violations are mitigated. In the future, the 
algorithm will be adapted to include line loading constraints. Since the 
OCM uses a non-linear, non-convex optimization solver, it is numeri-
cally expensive to calculate the global optimum. Therefore, for field 
deployment, machine learning models will be trained to behave like the 
OCM based on real and simulated data from the field and simulations, 
respectively. The machine learning model will be deployed in the field to 
cope with the low sampling time. 
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